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Epidemic variability in complex networks
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We study numerically the variability of the outbreak of diseases on complex networks. We use a susceptible-
infected model to simulate the disease spreading at short times in homogeneous and in scale-free networks. In
both cases, we study the effect of initial conditions on the epidemic dynamics and its variability. The results
display a time regime during which the prevalence exhibits a large sensitivity to noise. We also investigate the
dependence of the infection time of a node on its degree and its distance to the seed. In particular, we show that
the infection time of hubs have non-negligible fluctuations which limit their reliability as early detection
stations. Finally, we discuss the effect of the multiplicity of paths between two nodes on the infection time. In
particular, we demonstrate that the existence of even long paths reduces the average infection time. These
different results could be of use for the design of time-dependent containment strategies.
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I. INTRODUCTION

Many complex systems display a very heterogeneous de-
gree distribution [1-4] characterized by a power law decay
of the form P(k) ~k~”. This form implies the absence of a
characteristic scale hence the name of “scale-free network”
(SFN) [5,6]. Among these networks, a certain number are of
a great interest to epidemiology [4,7,8] and it is thus very
important to understand the effect of their topology on the
spreading dynamics of a disease. One of the most relevant
results is that disease spreading does not show an endemic
threshold in SFN when the population size is infinite and y
<3 [9-13]. This result means that a disease propagates very
easily on a large SFN whatever the value of its transmission
probability. In addition, recent studies showed that the pres-
ence of hubs in SFN not only facilitates the spread of a
disease but also accelerates dramatically its outbreak
[14,15,17].

The long-tailed degree distribution of SFN is the signature
of the presence of a non-negligible number of highly con-
nected nodes. These hubs were already identified in the epi-
demiological literature as superspreaders [18,19]. Conse-
quently, from a public health point of view, studying the
spreading of epidemics on SFN is all the more appropriate.
Superspreading events affect the basic reproductive number
Ro—a widely used epidemiological parameter [19,21]—
making its estimate from real-world data difficult [22-24].
As a matter of fact, it seems that superspreading events ap-
peared in the onset of the recent SARS outbreak [23-26] and
could be crucial for the new emergent diseases and bioterror-
ist threats. Their potential threat justifies detailed studies of
the incidence of the degree distribution at the initial stage of
epidemics.

The variability plays an important role in the accuracy
and the forecasting capabilities of numerical models and has
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thus to be quantified in order to assess the meaningfulness of
simulations with respect to real outbreaks [20]. Using a nu-
merical approach, we analyze the evolution of epidemics
generated by different sets of initial parameters, both for
SFN and homogeneous random networks (RN). We use the
Barabdsi-Albert model (BA) [1] for generating a SFN and
the Erdos-Renyi network (ER) [27,28] as a prototype for RN.
Concerning the epidemic modeling, a simple and classical
approach is to consider that individuals are only in two dis-
tinct states, infected (I) or susceptible (S). There is initially a
number of iyN infected individuals and any infected node can
pass the disease to his neighbors [19,21]. The probability per
unit time to transmit the disease—the spreading rate—is de-
noted by \ and once a susceptible node is infected it remains
in this state. In more elaborated models, an infected indi-
vidual can change its state to another category, for example,
coming back to susceptible (SIS), or going to immunized or
dead (SIR) [19,21]. This S—1 approach (SI), in spite of its
simplicity, is a good approximation at short times to more
refined models such as the SIS or SIR models. The SI model
on both SFN and RN is thus well adapted to the character-
ization of the variability of the initial stages of epidemic
outbreaks spreading in complex networks, which is the focus
of this paper.

The outline of the paper is the following. In Sec. II, we
study the fluctuations of the prevalence and we identify dif-
ferent parameters controlling them. In particular, we high-
light the effects due to different realizations of the network
as well as different initial conditions. We also investigate the
influence of the nodes degree on the prevalence variability.
In Sec. III, we present results on the infection time and its
variation with the degree and with the distance from the ori-
gin of infections. We also discuss the effect of the number of
paths between two nodes on the infection time. Finally, we
discuss our results and conclude in Sec. IV.

©2006 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.73.046131

CREPEY, ALVAREZ, AND BARTHELEMY

3 T T T T T

25 I — 1 epidemic 10° BA networks
) - 10° epidemics 1 BA network
SL — 1 epidemic 10" ER networks |

------ 10° epidemics 1 ER network

. I I :
0 100 200 300

time
FIG. 1. Evolution in time of the coefficient of variation of the
density of infected A[i(r)] in BA networks (bold) and ER networks
(thin) for outbreaks simulated on the same network (dashed curve),
or on different networks (plain curve). The results are obtained for

A=0.01 and on networks of size N=10* nodes, and average degree
(ky=6.

II. PREVALENCE FLUCTUATIONS

A. Intra-networks and inter-networks fluctuations

We analyze in this section the effect of the underlying
network topology on the variability of outbreaks. It is indeed
important to understand whether the local fluctuations of the
structure of the network can have a large impact on the de-
velopment of epidemics.

In order to analyze this effect, we measure the variability
of outbreaks as the relative variation of the prevalence [den-
sity of infected individuals i(z)] given by

. V(0% = (i)

Ali(] = == (M

In order to evaluate this quantity we run simulations for
different “model sets:” first, for a given number of outbreaks
on a single network, second for a single outbreak on different
networks, and finally several outbreaks on different net-
works. We show in Fig. 1 the curves A[i(¢)] computed for
both the RN (thin lines) and the SFN (bold lines) and for two
of these model sets: 10° outbreaks spreading on the same
network (dashed curves), and a single outbreak per network
for 10* different networks (plain curves). The curves repre-
senting these two model sets are nearly superimposed for
both network topologies. The curves obtained from model
sets made of 10 outbreaks on 100 networks and 100 out-
breaks on 10 networks coincide with the other model sets
(not shown in the figure). These results indicate that the con-
tribution to the variability of () given by a particular net-
work realization is essentially the same as the one generated
by different outbreaks on the same network. This confirms
the intuitive idea that sampling different parts of a large net-
work is equivalent to average over different networks. Con-
sequently, studying variability of epidemics simulated on one
large enough network (intra-network) will lead practically to
the same conclusions as studying variability on several in-
stances of that network (inter-network). Furthermore, it
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FIG. 2. 7, versus 7 for several BA networks with (k) ranging
from 6 to 60, and different sizes (@, N=5x10%; A, N=10* V,
N=2x10% &, N=5X10* nodes; A=0.01). The line is a linear fit
with slope of order 4.

means that the results described in the next sections for one
network can be generalized to any instances of BA and ER
networks.

Figure 1 also reveals interesting facts about the time be-
havior of A[i(r)] on complex networks. Since the initial
prevalence is fixed and is the same for all instances, A is
initially equal to zero and can only increase. At very large
times, almost all nodes are infected implying that lim,_,., A
=0. This argument implies the existence of a peak which—as
shown in Fig. 1—is located for BA networks at the begin-
ning of the outbreak, with a maximum value larger than the
one obtained for ER networks. In order to characterize the
relation between the variability peak and the network hetero-
geneity, we define 7, as the time at which the maximum of
A[i(r)] is reached. We also use the fact that
the heterogeneity of the network degree—often quantified by
k=(k?)/{k)—is related to the typical outbreak time scale 7
given by [14,15]:

1

= m (2)

r
A discussion of the validity of this equation is provied in
Ref. [16]. In order to understand to which regime corre-
sponds 7,, we plot in Fig. 2 7, and 7 for BA networks with
different values of x. We use networks with different sizes
(from N=5X10? to N=5X10* nodes) and with different
values of (k) (6<(k)<60) in order to obtain a broad range
of 7 values.

We see in Fig. 2 that 7, is increasing linearly with 7 (with
a prefactor of order 4). This implies that 7, is of the same
order of the typical time 7, where the diversity of degree
classes of infected nodes is the largest (7,=67) [14,15]. The
result 7, =~ 7, confirms the intuitive idea that the variability is
maximal when the diversity of different classes of infected
nodes is the largest, which happens at the beginning of the
spread.

B. Effect of degree on i(¢) fluctuations

1. Seed degree

In this SI model, the parameter N\ simply fixes the time
unit. In contrast, we expect that other parameters such as the
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FIG. 3. Temporal evolution of the coefficient of variation of the
density of infected A[i(¢)] in BA networks for outbreaks seeded
with infected nodes of different degrees &, (from top to bottom,
ko=3,6,12,24,48,95,142,248). Inset, initial evolution of the
prevalence i(z). The order of the curves is reversed between both
plots (Results are averaged over 5 X 103 epidemics on one network,
with A=0.01, N=10" nodes, (k)=6.)

degree of the seed may have a more interesting effect on the
outbreak and its variability. Figure 3 displays the evolution
of A[i(z)] for outbreaks starting from initial infected nodes
with a given degree k; (from 3 up to 248). This figure shows
that the variability peak decreases when k is increased. In
other words, when an outbreak begins from a highly con-
nected node, the early stages of the spreading tend to be less
variable. One might think that the number of paths available
on a highly connected node leads to a higher overall variabil-
ity, it is however not the case. As shown in the inset of Fig.
3, the prevalence increases with the seed degree, which may
explain the variability for different k. Indeed, when the seed
is a hub, the number of infected becomes rapidly very large
and thus leads to smaller relative variations of the preva-
lence. This result leads us to investigate more thoroughly the
degree of infected nodes and analyze the differences between
BA and ER networks.

2. Degree of infected nodes

In this section, we study in detail the degree properties of
the infected nodes during the outbreak of the disease.
For a ST model, the evolution of the density i;(r) of in-
fected nodes of degree k is given at the mean-field level by
D a1 - 10,00, @
dt
where 1-i; is the density of susceptible nodes of degree k
and O is the probability that a link pointing to a node of
degree k originates at an infected node [10]. This equation,
studied for an uncorrelated scale-free network and uniform
initial conditions iy =i,(¢t=0) leads to the following behavior
at short times [14,15]:

k(k)

tr_
<k2>—<k>(6 1)) (4)

lk(t) = 10(1 +

with 7 defined in Eq. (2).
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FIG. 4. (Color online) Temporal evolution of the density of
infection by classes of degree. (a)Spreading on a BA network. The
dashed lines are given by Eq. (5) with different values for i: 0.002,
0.02 (lower to upper) and the plain lines corresponds to their nu-
merical results. (b) Spreading on an ER network. For both panels
the color bar represents the density of infected and where white
means 0.1 and above. (The results are computed over 10° out-
breaks on networks of size N=10* nodes, (k)=6, and spreading rate
A=0.01.)

From this equation, we can deduce the expression for the
time #,(i) for i; to reach the value i,

K2y = k) [ i
tk(i)=rln[l+%(i— )} (5)

For a fixed prevalence i, the time #,(i) varies very slowly
with k and thus can vary significantly only on a network with
a large range of degree variation. The results are shown in
Fig. 4, which is composed of two contour maps of the tem-
poral evolution of i in both BA and ER networks. In order to
simplify the reading of this figure, the density of infection
has been limited to 0.1 since we are only interested in the
beginning of the outbreaks. We also plot, in Fig. 4(a), the
curves corresponding to Eq. (5) for different values of i
(0.002 and 0.02) and numerical result for the same values
(plain curves). It can be seen that the predictions of Eq. (5)
for small density and short times are in agreement with the
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FIG. 5. (Color online) Temporal evolution of the coefficient of
variation of the density of infected by classes of degree on a BA
network. The range of A[i;(z)] is limited to [0,5] for readability
(the actual results can go up to 30). Color bar accounts for A[i(7)]
(white means 10 and above). These results are obtained for
N=10* nodes, {(k)=6, A=0.01, and averaged over 10° outbreaks on
50 different networks in order to have data for the whole range of
degrees.

average behavior obtained from our simulations (the agree-
ment is better for larger degree since the hubs are infected at
smaller times). For larger times, the approximation used in
Eq. (4) is not valid anymore, which explains the observed
discrepancy for larger values of the density such as i=0.02.
These results confirm earlier work [14,15] on the “cascading
effect” of the spreading, from hubs to poorly connected
nodes. Figure 4(b) is the ER counterpart of Fig. 4(a). It dem-
onstrates that the hierarchical spreading from well connected
to poorly connected nodes also occurs on homogeneous net-
works. The cascading effect however is less visible on the
average degree of infected nodes because of the limited
range of degrees (see also Sec. IIT A).

Figure 5 gives a complete picture of the variability of i;(r)
in an heterogeneous network and helps to understand the role
of each degree in the variability peak observed in Fig. 1. It
displays for a BA network a contour map representation of
the temporal evolution of A[i(¢)] according to the classes of
degree. We observe that the largest values of A[ii(z)] are
reached at the beginning of outbreaks, then decrease during
the infection process. The very high values of A (white on
the plot) which can be up to 30 are reached during a period
lasting until 67 (in this plot 7=7). The end of this period
corresponds to the moment when all degree classes are in-
fected. For superspreaders, Fig. 5 also shows that their infec-
tion time is fluctuating a lot even for long times, because of
their small number in networks. This result will be confirmed
in the next section and means that their infection time has
important fluctuations. For some outbreaks, the time to reach
a superspreader can be long because of its distance to the
seed (see Sec. III B).

III. FLUCTUATIONS OF THE INFECTION TIME

The randomness of the epidemic process makes it very
difficult to predict an accurate time interval for the infection
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FIG. 6. (Color online) Frequency of the moment of infection
of a node as a function of its degree. (a) Spreading on a BA net-
work. Inset, frequency of #,,; shown for the beginning of outbreaks
on high degree nodes. (b) Spreading on an ER network. For both
panels the color bar represents the frequency and where white
means 0.02 and above (N=10* nodes, (k)=6, A=0.01, 7px=~7,
Trr =~ 16.5).

of a given node. However, with the same methods used in the
preceding section, we can draw the general picture of the
distributions of the infection time #;—defined as the time
for which a given node becomes infected—as a function of
the degree of the node and its distance to the seed (similar
considerations were studied in Ref. [17]).

A. Effect of the degree

Figure 4 shows how the prevalence i(r) varies with the
degree. Time of infection and prevalence being related, we
first plot (Fig. 6) the distribution of the infection time
versus the degree. For this figure we count all the nodes with
a given degree k which have been infected at each instant ¢,
and then we normalize the corresponding results by the num-
ber of individuals with degree k and by the number of simu-
lations. Each degree is represented by a column where fre-
quencies are associated with a representative color (right
color bar), the sum of all frequencies in a column being
equal to 1. Given that a single BA network does not contain
the whole range of degrees, the plot shown in Fig. 6(a) is
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FIG. 7. Coefficient of variation of infection time as a function of
nodes degree k. Gray symbols stand for A(z;,;) computed by nodes,
and black symbols for A(r,;) computed for nodes with the same
degree (vertically aligned). A symbols represent the spread on BA
networks, and @ stand for ER networks. (Results are computed
over 10? outbreaks on a single network, N=10* nodes, (k)=6 links,
with a seed of degree ky=6, A\=0.01.)

based on data from 50 networks. These results are a conse-
quence of the cascading effect on lower degree nodes on
both topologies: the larger the degree and the smaller the
average infection time. In addition, we observe that there is a
relatively large range of fluctuation of the infection time
even for large degrees. Indeed, in the inset of Fig. 6(a) we
observe that for highly connected nodes (e.g., from 80 to
150), the typical 7;,; varies between 67 and 137 (on the plot,
t=40 and 90) which is late for well-connected nodes. In fact,
only a small fraction of the superspreaders is infected during
the early epidemic stages (until 67) and triggers the outbreak.
Approximately the same scenario seems to hold for ER net-
works [Fig. 6(b)], even if the concept of superspreaders is
not the most appropriate for a network with a small range of
degree variation.

In order to understand thoroughly the properties of the
infection time, we also show in Fig. 7 scatter-plots of its
relative dispersion A(z;,) versus the degree for both ER and
BA topologies. This figure displays more insights concerning
the behavior of #,; depicted in Fig. 6. First, for the BA net-
work, nodes with a given degree k can have a wide range of
A(t;,¢) Which increases with k. This demonstrates that even if
the superspreaders are infected at relatively short times, large
relative fluctuations cannot be excluded. In contrast, all
nodes for the ER network have smaller and similar values of
A(t,,¢) which is consistent with the fact that the hierarchical
spreading is less pronounced on ER due to its limited range
of degree.

B. Effect of distance

Another important parameter which affects the infection
time of a node is its distance to the seed as measured by the
number of hops of the shortest path [17]. In the networks
considered here there is no spatial component and the dis-
tance between two nodes is given by the smallest number of
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FIG. 8. Infection time as a function of the distance € from the
seed (N=10% (k)=6, averaged over 10> outbreaks which start at
exactly the same seed of degree kg=6).

hops € to go from one node to another. In Fig. 8, we show
the relationship between the average time of infection (f;,¢)
and ¢ for ER and BA networks. We see on this plot that the
infection time (t;,¢) is always larger for ER than for BA net-
works. It means that nodes with the same value of €, i.e., at
the same distance from the first infected node, have a lower
(tiney if they belong to a BA networks. The reason for this
behavior lies in the difference of the numbers of shortest
paths in these networks. Indeed, if we enumerate these paths,
we observe that their numbers relatively differ between both
BA and ER topologies. We have computed the size and the
number of shortest paths between a randomly selected node,
i.e., a potential seed of infection and the rest of the network
and we present in Table I the average number of shortest
paths at distance €. Results are computed over 10° random
selection of the potential seed in order to get an accurate
picture of the network. The table exhibits a difference in the
number of paths for €>2 (8% difference for €=3, 40% for
€=4, 74% for €=5) which confirms the fact that on BA
networks, nodes have more paths to go from one to another
in a small number of hops. Table I describes the statistics of
shortest paths but longer paths also contributes to the spread-

TABLE 1. Average number of shortest paths between a ran-
domly selected node and a node at distance € (results are computed
over 10° random selections of an initial node of degree ko=6).
N=10* nodes, (k)=6.

€ BA networks ER networks
1 1 1

2 1.00668 1.00144

3 1.09870 1.01126

4 1.48679 1.06732

5 2.44046 1.40124

6 3.25166 2.77646

7 3.15678 2.64469

8 1.11256

9 1
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FIG. 9. Average infection time of node B as a function of A for
two different configurations. In the first case infection occurs in
one step and in the second case another path is added. The dotted
curve represents the average time of infection for the first case,
(tinp=1/\ and the plain curve represents (t;,;) for the second case
and is given by Eq. (7). The result of a numerical simulation are
shown by + symbols.

ing of the disease. Their role can be highlighted by studying
the following simple cases. In the first case an infected node
A is in contact with a susceptible node B. In the second case,
there is an additional path from A to B going through a
susceptible node C (see Fig. 9). In the first “direct” case, the
average time of infection (! )(B) of B is given by

1
(t1{(B)y= o (6)

The addition of a longer path in the second case (Fig. 9)
changes the behavior of (#;,{B)) and Eq. (6) no longer holds
for this case. In fact, the time of infection of the susceptible
node B is given by

tinf(B) = min[tglf(B)’tfnf(B)]» (7)

where ¢ (B) is the time of a direct infection A — B and #. ; of
an indirect two-steps infection process, A— C— B. The sta-
tistics of #;,,; can be easily computed and its first moment
reads

1 3-2\

INEINE ®

<tinf(B)> =

Equation (8) predicts values always smaller than 1/\ (see
Fig. 9). This result could appear as paradoxical since adding
a longer path actually reduces the average infection time. In
fact, the probability that the disease is not transmitted on
both paths is very small and the existence of another path
cuts off large direct infection time and thus reduces the av-
erage infection time of B. Since BA networks have a cluster-
ing coefficient larger than ER networks [1] this result ex-
plains the small difference of infection times for =1 seen in
Fig. 8.

Concerning the relationships between the relative disper-
sion of infection time A(f;,¢) and ¢, their behavior on both
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FIG. 10. Coefficient of variation of the infection time as a func-
tion of the distance € from the seed. Top panel, spreading on a BA
network, bottom panel, ER network. Both panels show A(t;,), for
every nodes of a single network, N=10* nodes, (k)=6, and com-
puted over 103 outbreaks, N=0.01, originating from exactly the
same seed of degree ky=6.

topologies are reported in Fig. 10. This figure shows that the
nodes in both networks exhibit higher values of A(z;,;) when
they are closer to the seed, i.e., for €<<3. For larger dis-
tances, A(t,,) is practically constant in both cases.

IV. CONCLUSIONS

We have analyzed in detail the variability of a simple
epidemic process on SFN. First, we have shown that differ-
ent realizations of BA networks do not display significant
statistical differences in outbreak variability. Consequently, it
is statistically reliable to consider a single realization of the
network, provided it is large enough. We have also shown
that the prevalence fluctuations are maximal during the time
regime for which the diversity of the degrees of the infected
node is the largest. In order to analyze in detail this variabil-
ity, we examined the temporal degree pattern of infected
nodes. In particular, we demonstrated the high variability of
superspreaders’ prevalence. We found that for the hubs the
infection time is usually small but with fluctuations which
can be large. Even if the hubs are good candidates for being
chosen as surveillance stations—given their short average
infection time, they present non-negligible fluctuations
which limit their reliability. In this respect, the ideal detec-
tion stations should be nodes with the best trade-off between
a short average infection time and a high reliability as given
by small infection time fluctuations.

The topological distance to the seed is also an important
parameter in epidemic spreading pattern. Nodes at a short
distance from the seed are infected at small time—in the
high variability regime—and thus have a large infection time
variability. Maybe more surprising is the importance of the
number of paths—not only the shortest one—going from the
seed to another node. The larger this number and the smaller
the average infection time. This is an important conclusion
for containment strategies since the reduction of epidemic
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channels will increase the delay of the infection arrival and
will thus allow for a better preparation against the disease
(for example, vaccination).

These results could be helpful in designing early detection
and containment strategies in more involved models which
go beyond topology and which include additional features
such as passenger traffic in airlines or city populations
[20,29-31].
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